A Robust and Efficient Method for Solving Geometrical Constraint Problems by Homotopy

نویسندگان

  • Rémi Imbach
  • Pascal Mathis
  • Pascal Schreck
چکیده

The goal of Geometric Constraint Solving is to find 2D or 3D placements of some geometric primitives fulfilling some geometric constraints. The common guideline is to solve them by a numerical iterative method (e.g. Newton-Raphson method). A sole solution is obtained whereas many exist. But the number of solutions can be exponential and methods should provide solutions close to a sketch drawn by the user. Assuming that a decomposition-recombination planner is used, we consider irreducible problems. Geometric reasoning can help to simplify the underlying system of equations by changing a few equations and triangularizing it. This triangularization is a geometric construction of solutions, called construction plan. We aim at finding several solutions close to the sketch on a one-dimensional path defined by a global parameter-homotopy using the construction plan. Some numerical instabilities may be encountered due to specific geometric configurations. We address this problem by changing on-the-fly the construction plan. Numerical results show that this hybrid method is efficient and robust. Key-words: Geometric Constraint Solving Problems, Reparameterization, Curve Tracking, Symbolic-Numeric Algorithm ∗ Travail en partie effectué au laboratoire ICube. † Laboratoire ICube UMR 7357 CNRS Université de Strasbourg, bd Sébastien Brant, F-67412 Illkirch Cedex, France Une méthode robuste et efficace pour résoudre des systèmes de contraintes géométriques par homotopie Résumé : Le but de la résolution de problèmes de contraintes géométriques est de produire des figures 2D ou 3D satisfaisant un ensemble de contraintes portant sur leur géométrie. De tels problèmes sont en général résolu grâce à une méthode numérique, souvent Newton-Raphson, qui ne produit qu’une solution alors qu’il en existe un nombre exponentiel. Celles ressemblant à l’esquisse sont d’un intéret particulier. Les approches par décomposition-assemblage produisent des systèmes irréductibles qui peuvent comporter beaucoup de contraintes. Le raisonnement géométrique peut cependant aider à simplifier les sytèmes d’équations correspondant en remplaçant quelques équations, ce qui permet de les triangulariser. Une telle triangularisation est une construction géométrique des solutions et est appellée plan de construction. On se propose dans ce rapport de trouver plusieurs solutions, proches de l’esquisse sur une courbe définie par une homotopie utilisant le plan de construction pour réduire son coût. L’utilisation d’un plan de construction induit des instabilités numériques à proximité de certains points; ces instabilités sont évités en changeant le plan de construction pendant le suivi de la courbe. La méthode décrites ici a été implémentée, et les résultats obtenus montrent son efficacité et sa robustesse. Mots-clés : Problèmes de résolution de contraintes géométriques, Re-paramétrisation, Suivi de courbes, Algorithme symbolique-numérique A Robust and Efficient Method for Solving GCSP by Homotopy 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Solving Constraint Satisfaction Problems

Many important problems in Artificial Intelligence can be defined as Constraint Satisfaction Problems (CSP). These types of problems are defined by a limited set of variables, each having a limited domain and a number of Constraints on the values of those variables (these problems are also called Consistent Labeling Problems (CLP), in which “Labeling means assigning a value to a variable.) Solu...

متن کامل

A New Method for Solving Constraint Satisfaction Problems

Many important problems in Artificial Intelligence can be defined as Constraint Satisfaction Problems (CSP). These types of problems are defined by a limited set of variables, each having a limited domain and a number of Constraints on the values of those variables (these problems are also called Consistent Labeling Problems (CLP), in which “Labeling" means assigning a value to a variable.) Sol...

متن کامل

Solving a System of Linear Equations by Homotopy Analysis Method

‎In this paper‎, ‎an efficient algorithm for solving a system of linear‎ ‎equations based on the homotopy analysis method is presented‎. ‎The‎ ‎proposed method is compared with the classical Jacobi iterative‎ ‎method‎, ‎and the convergence analysis is discussed‎. ‎Finally‎, ‎two‎ ‎numerical examples are presented to show the effectiveness of the‎ ‎proposed method.‎

متن کامل

VARIATIONAL HOMOTOPY PERTURBATION METHOD FOR SOLVING THE NONLINEAR GAS DYNAMICS EQUATION

A. Noor et al. [7] analyze a technique by combining the variational iteration method and the homotopy perturbation method which is called the variational homotopy perturbation method (VHPM) for solving higher dimensional initial boundary value problems. In this paper, we consider the VHPM to obtain exact solution to Gas Dynamics equation.

متن کامل

An assessment of a semi analytical AG method for solving two-dimension nonlinear viscous flow

In this investigation, attempts have been made to solve two-dimension nonlinear viscous flow between slowly expanding or contracting walls with weak permeability by utilizing a semi analytical Akbari Ganji's Method (AGM). As regard to previous papers, solving of nonlinear equations is difficult and the results are not accurate. This new approach is emerged after comparing the achieved solutions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1503.07901  شماره 

صفحات  -

تاریخ انتشار 2015